A note about regulating compressed air: When a pressure drop is detected, it is tempting to just turn up the regulator. You’ll save more by first looking for and solving the problem that caused the pressure drop. For example, undersized piping, dirty filter elements, and friction caused by poor tool lubrication all can contribute to pressure drop.
This brings us to the third step: lubrication. Keeping tools – even prelubricated tools – lubricated can prolong their life and keep them efficient and productive. The air preparation system can be a good way to add continuous lubrication. Typical direct feed (oil-fog) lubricators need to be placed no farther than 15 feet from the tool they are lubricating (and level with or above the tool). Microfog lubricators atomize oil particles so they can travel longer distances, up or down, and through intricate flow paths and lubricate multiple tools.
A lubricator is almost always used after a filter and regulator have preconditioned the air. These can be stand-alone components or integrated as one filter-regulator-lubricator (FRL) combination.
Saving energy: It's not just the compressor
Plant operators are always looking for ways to use the compressor more efficiently, but there are additional opportunities to save energy between the compressor and the tool.
Leakage is the major source of energy loss in air distribution systems. A typical plant can lose 20%–30% of its compressed air, the U.S. Energy Department notes, through poorly connected pipe joints, fittings, or couplings. A single quarter-inch leak can cost more than $5,000 per year in wasted energy, and many such leaks can be repaired in under an hour, so payback is immediate and immense.
About the Author: Charles Werdehoff
Charles Werdehoff is FRL product marketing manager for the Americas at IMI Norgren, where he has worked for more than 35 years. He has extensive air preparation experience and manufacturing experience and can be reached at [email protected].
Misuse is another common cause of waste. Compressed air is an efficient way to deliver high power for air tools, cylinders, valves, air motors, and other air-driven equipment, but sometimes low power is sufficient. For example, low-pressure blowers can be used for applications such as open blowing or aerating liquids. Make sure when you decommission equipment that you shut off the air supply.
Overpressurization, too, wastes energy. In addition to adding regulators, take a look at processes. For example, double-acting cylinders usually only do work on the out-stroke. The return stroke may be accomplished at lower pressure. Where large bore, long-stroke or multiple cylinder systems are used, this can result in considerable air savings. Using a regulator to reduce return stroke pressure can pay for itself quickly.
As with nearly everything else in your plant, regular maintenance of the air distribution system will pay off in higher efficiency. Checking filters at least annually and replacing filter elements before they are blocked will keep you from starving tools of the power they need to perform at their best.
Looking beyond the compressor
As one of the most expensive pieces of equipment to buy and operate, your plant’s air compressor is probably top of mind, but paying attention to the air after it leaves the compressor can pay dividends, too. Proper air preparation and maintenance is fairly simple and very cost-effective.