Those who have doubts about the merits of solar energy systems might talk with Dick Melsheimer, CEO of Melfred Borzall’s Directional Drilling and Horizontal Earth-Boring Tools. His company uses solar energy to manufacture horizontal directional drilling tools for contractors at plants in Santa Maria and Santa Fe Springs, Calif.
The electrical loads imposed by the plant’s welders, lathes and other production equipment represented a sizable operating expense before Melfred Borzall implemented conservation initiatives a few years ago to improve energy efficiency. After attending an informational workshop hosted by his electric utility, PG&E, Melsheimer was convinced that his operations demanded more energy efficiency, and that solar could be a big contribution.
His electrical bill dropped during the next five years from $36,000 in 2003 to about $4,000 following his investment in a photovoltaic solar energy system. That reduction occurred even as 150 hp of new equipment was added to the Santa Maria plant’s electrical load. The system will pay for itself in seven years, long before the warranty on the solar panels expires.
Melsheimer acted in the wake of California’s wave of rolling blackouts earlier this decade. Skyrocketing electricity charges and unstable conditions in the Middle East threatened not only his family-owned business but the wellheads of the western industrial world’s oil supply. He felt the time had come to explore ways to make his company’s operations more energy-independent.
“As an independent, family-run business, we had the opportunity to choose to operate in a more environmentally responsible manner,” he says. “You can’t do everything that’s needed to combat global warming, but we can do something. What we’ve done here is our little part, perhaps, of the overall solution.”
The Santa Maria plant has added an array of photovoltaic panels that provides more than 80% of the electrical power for the plant’s operations. A planned expansion should make the plant independent of the PG&E supply.
Plant processes require a substantial supply of 480 V electricity for lathes, welders and other equipment. In addition, there’s office lighting and air-conditioning to run.
The electrical design for the plant’s solar energy exchange is simple. The direct current the panels produce passes through an inverter that outputs usable AC power. There’s no on-site battery storage.
The electric utility has a seasonal rate structure with higher summer charges of 18 cents/kWh versus the 13 cents/kWh during the rest of the year. The utility’s net-metering program delivers a corresponding credit toward the billing if an alternative energy system linked to the PG&E grid produces more electricity than it consumes. That means when Melsheimer’s plant closes on weekends or other daylight hours, the meter runs backward and the surplus energy the solar panels generate results in a credit.