“Once you begin to have a failure, it never corrects itself,” warned Gierlach. “But not every anomaly is identical in nature. Look at footprints or signatures for similarities to basic faults.” He recommended looking at fault signatures in FFT and in Time Analyzer to validate findings, as well as determining the severity for each fault and generating report images to visualize the findings.
"Trust your analysis,” said Gierlach. “I don’t care what you think you see. Trust the report and analysis. We cannot always open electrical equipment. I don’t want to open the equipment when it’s energized.”
As insulating material breaks down or conducting material breaks down, faults become identifiable. “Arcing and tracking can be present in all voltage classes,” said Gierlach. “For detection, we have to use airborne and contact ultrasound. Arcing is the easiest one to discuss. This is a full-intensity discharge, return to silent, and no clear pattern noted. It’s a burst of energy. How often and frequently helps us to gauge severity. Tracking usually happens before arcing. Arcing is a result of a tracking event that has taken place over time. The higher the amplitude, the more intense.”
For reporting, you have to capture it to visualize it, he said. “It’s easy to put a face on arcing and describe it to some nontechnical person. The byproducts of arcing are carbon deposits. If you can get a shutdown of the system to do a visual inspection, that’s something to look for to validate.”
In the frequency analyzer, for the FFT, the configuration for electrical is 1,000. “Beyond 1,000 in the spectralyzer is not very useful for electrical systems,” advised Gierlach. “Make sure you set this to 1K. And determine if you’re dealing with a 50-Hz or 60-Hz system to determine the low end of your axis.”
The harmonic is a multiple of the base frequency. “In the FFT, we have a harmonic marker,” he explained. “The noise between spikes tells me I have an event that’s electrical in nature.”
The FFT is looking for predictability and repeatability. “When we look at the FFT, arcing and tracking look very similar,” Gierlach said. “But when we look at the time domain, we see two very different signatures. Tracking is a discharge along an insulating surface that’s trying to find a ground. It’s a continuous buildup of these discharges. Tracking has no repeatable event that can be seen over time. There are different points in time. It gets visualized by the different distances between spikes. The more bursts I have, the higher it’s building in intensity. It’s getting worse when you have more of these in the same timeframe. And nothing is symmetrical in amplitude on tracking.” Visualize discharge points or tracking respective to the electrical AC sine wave, he advised.
“We don’t want to overload the system in the analyzer,” added Gierlach. “You won’t be able to differentiate the two most common events, if you use just the frequency tool. Tracking, as opposed to arcing is nonsymmetrical, there’s non-uniformity in the spaces between spikes, and the height of the spikes is non-uniform."