In brief:
- Intern approaches pump alignment with laser accuracy.
- Tips to compare the energy wasted by a hot coupling to the energy loss.
- Misalignment affects bearing load and excessive bearing load causes exponential decreases in bearing life.
In the summer of 1994, Jack Lambley, an intern at Imperial Chemical Industries’ (ICI) Rocksavage site in the United Kingdom, was quantifying the effect of misaligned process pumps on power consumption. He arranged to have a surplus pump overhauled and fitted with new bearings. He then had the pump installed in a suitably instrumented closed-loop arrangement operating on water. Prüftechnik loaned Lambley a laser-optic alignment instrument.
As an undergraduate student, Lambley had learned that misalignment affects bearing load and that excessive bearing load causes exponential decreases in bearing life. His supervisor, Steve Moore, had asked Lambley to read the engineering sections of SKF’s general catalog, which stated that a 25% increase in bearing load cut its rated life in half.
Lambley investigated alignment accuracy and methods the plant was using at the time. He found that straightedge methods were inappropriate for refinery pumps. Rim-and-face alignment methods were judged to be difficult and generally unreliable. Properly executed, reverse-dial-indicator methods required consideration of bracket sag, which would take more time. Still, from data available at Rocksavage, he calculated that typical misalignment was 0.02-in. vertical and horizontal offsets and 0.002 in./in. vertical and horizontal angularity.
[pullquote]
In 1994, lasers were already known to be inherently more accurate than the best competing techniques. Lambley believed them to be 10 times more accurate.
The graphs and tabulations Lambley constructed are reproduced here, duly acknowledging ICI’s role. The recommendations coming out of the study suggested aligning machinery to within 0.005-in. shaft offset and limiting deviations in hub gap to 0.0005 in./in. of hub diameter. Lambley further documented that adhering to these recommendations could reduce ICI’s power consumption by about 1%. He confirmed that laser alignment was fast and accurate. He found that laser-alignment technology was bottom-line cost-effective. He deserves credit for establishing facts instead of repeating the opinions of others.
The following data is from a typical mid-sized refinery:
Average annual electrical demand for pump motors:
27 kW/pump x 8,760 hrs/yr x $0.10/kWh x 1,000 pumps = $23,652,000/yr