Process control operators: How to stop contamination – including from compressed air – in its tracks

Feb. 5, 2018

To ensure a high level of food safety, operators must apply the plan to all aspects of the food and beverage production process, including the use of compressed air.

When it comes to food and beverage production, safety is a must. When food safety isn’t prioritized during the production process, the door is open for risks such as food-borne contamination and diseases. In this process, the roles of both the operator and the compressed air system are crucial because the operator's knowledge of what systems to put in place can help prevent food contamination.

In many cases, food production facilities are obligated to adhere to the Food and Drug Administration’s (FDA) Federal Food, Drug and Cosmetic (FD&C) Act. As part of this mandate, food and beverage manufacturers must follow a plan that puts structured practices in place to ensure food safety. Each facility must dedicate a person or persons to document this plan and ensure it is specific to the practices in that particular facility.

The food safety plan also requires food and beverage manufacturers to establish control measures rooted in science to prevent the likelihood of food contamination. Simply put, the plan is a systematic method made up of preventive measures designed to reduce risks from external factors such as biological, chemical, or physical hazards.

To ensure a high level of food safety, operators must apply the plan to all aspects of the food and beverage production process, including the use of compressed air. To demonstrate how it is applied, we’ll take a look at each step in the process.

1.  Hazard analysis

Perform an assessment to collect and evaluate information about hazards associated with the food under consideration. This is typically done in two steps:

  • Identify the hazard - what is it?
  • Evaluate the hazard - how will it impact the food production process?

2.  Preventive controls

Determine and log which controls can be applied to prevent or eliminate a food safety hazard or reduce it to an acceptable level. When it comes to compressed air quality, typical preventive controls for compressed air include temperature, moisture, and oil content.

Preventive controls often fall into the following categories:

  • Process controls
  • Food allergen controls
  • Sanitation controls
  • Other controls

3.  Oversight and management of preventive controls

Once preventive controls are set by the operators, a process must be put in place to catch any issues that may arise and to ensure that the preventive controls are functioning properly. This process should include:

  • Monitoring
  • Corrections and corrective actions
  • Verification

For compressed air, controls such as container temperature, blast duration, and dew point are monitored in real time. Particulate and oil are monitored through sampling. If monitoring determines the container temperature for the compressed air is not right, the corrective action is to adjust it accordingly.

And to confirm the preventive control process is viable, it needs to be verified. To verify the preventive controls, manufacturers can conduct product testing that includes detailed documentation to establish a record.

4.  Supply-chain program

Manufacturers must activate a risk-based supply-chain program if the hazard analysis uncovers a hazard that requires a preventive control and if that control is part of the manufacturing supply chain.

5.  Recall plan

In the event that a hazard occurs, there must be a plan in place to recall the food product affected by the hazard. That plan should be well-documented so that it can be implemented as needed.

Using the FDA’s food safety plan can help manufacturers deliver repeatable food quality and safety. Addressing compressed air quality during the food production process can help operators prevent possible contamination or make key adjustments to eliminate issues now and for the future.

About the Author

Alexis Gajewski | Senior Content Strategist

Alexis Gajewski has over 15 years of experience in the maintenance, reliability, operations, and manufacturing space. She joined Plant Services in 2008 and works to bring readers the news, insight, and information they need to make the right decisions for their plants. Alexis also authors “The Lighter Side of Manufacturing,” a blog that highlights the fun and innovative advances in the industrial sector. 

Sponsored Recommendations

A Paradigm Shift in Pump Selection

Jan. 22, 2025
Discover how INNOMAG® is transforming pump selection with innovative design and unparalleled performance. Learn how this breakthrough solution simplifies operations, enhances ...

The Need for Speed: The Most Advanced Sealless Pump is Also the Fastest

Jan. 14, 2025
Struggling with a troublesome pump? Get a reliable solution in just five days with the fastest, most advanced sealless pump on the market.

Say Goodbye to Pumping’s Weakest Links

Jan. 14, 2025
Shaft seals and ball bearings cause nearly 80% of pump failures—but not with INNOMAG®. With no seals, no bearings, and a thrust-balanced design, these pumps deliver unmatched ...

Ready to Reduce the Cost of Energy with a Highly Efficient, More Forgiving Pump?

Jan. 14, 2025
INNOMAG® pumps save energy and maintain peak efficiency over time—no wear and tear. Discover how they can lower your operating costs and increase reliability.